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Polish groups, non-Archimedean groups

Begin with background. All topological groups G in this talk will
be Polish. Note that each open subgroup is closed, and has
countable index in G.

G is non-Archimedean if it has a basis of neighbourhoods of the
identity consisting of open subgroups. Such groups have a basis of
clopen sets.

They are, up to homeomorphism, the closed subgroups of the

topological group Sym(N) of permutations of N with the usual
topology of pointwise convergence.
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(Locally) Roelcke precompact groups

Let G be a closed subgroup of Sym(N). Note G is compact iff each
open subgroup has only finitely many (left) cosets.

Definition (for such G)

m G is Roelcke precompact (R.p.) if each open subgroup U has
only finitely many double cosets. That is, there is finite « C G
such that G = UaU.

m G is locally Roelcke precompact if G has a Roelcke
precompact open subgroup.
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Borel classes of closed subgroups of Sym(N)
The closed subgroups G of Sym(N) form a “standard Borel space”:
m If 0 is a string let [o] = {7 € Sym(N): o < 7}.
m The o-algebra of Borel sets is generated by the sets
{G: Gno]#0}.

Kechris, N. and Tent, 2018; Logic Blog 2020:

Programme

(a) Determine whether classes C of closed subgroups of S, are
Borel.

(b) If C is Borel, study the relative complexity of the topological
isomorphism relation using Borel reducibility <g.
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Some classes, and inclusion relations

locally Roelcke precomp.

/\

Roelcke precomp. locally comp.
\ /
U U
)
oligom. compact discrete

m [somorphism relation on each class in the diagram is <pg graph
isomorphism (Kechris, N. and Tent, 2018).

m = on the profinite groups is >p graph isomorphism (Kechris,
N. and Tent, 2018).
m = on the class of oligomorphic groups is <g a countable Borel

equivalence relation (N., Schlicht and Tent, 2021).
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Two goals in this talk

(1) Show how to represent locally Roelcke precompact groups by
certain countable structures called “coarse groups”. Establish
Borel duality.

(2) For tdlc groups, introduce a variant of the coarse groups called
“meet groupoids”. They are algebraically more concise, and
hence can be used for an algorithmic theory of such groups.
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[. Borel duality between

locally Roelcke precompact groups and

their coarse groups
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Roelcke precompactness

In the first part of the talk, by G we always denote a closed
subgroup of Sym(N). For such G general definitions of Roelcke,
1988; Rosendal, Zielinski, 2020 amount to this:

Definition

G is Roelcke precompact (R.p.) if each open subgroup U has only
finitely many double cosets.
G is locally Roelcke precompact if it has a R.p. open subgroup.

Let T, be the undirected tree with each vertex of infinite degree.
m Aut(7) is locally R.p. (Zielinski), and not locally compact.

m The stabiliser of a vertex is Roelcke precompact.
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Some coarse language
The following was introduced for R.p. in Kechris, N., Tent 2018.

Given a locally R.p. G, let M(G) be its coarse group:

m The domain consists of (numbers encoding) the R.p. open

cosets in G.

m Ternary relation “AB C C” on the domain.

R.p. open cosets approximate elements of GG, so this ternary
relation approximates the binary group operation.

Each R.p. open subgroup of G is a finite union of double cosets of
a basic open subgroup. So J only countably many such subgroups.

Using descriptive set theory, we can view the operator M as a
Borel function from locally R.p. groups to structures with

domain N.
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Borel duality theorem

m An abstract coarse group is a structure on N with a ternary
relation satisfying certain axioms'. Denote elements by
A, B, C, and write the ternary relation suggestively as
ABLC C.

m Let CG be the closure under isomorphism of the range of M,
among structures on N with one ternary relation.

m We aim at a duality

M
—
locally R.p. groups LRP ; CG class of coarse groups.
Isee N., Schlicht, Tent JML 2021, Coarse groups, and the isomorphism
problem for oligomorphic groups, Def 2.1 onwards
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Defining the reverse operation G:

from coarse groups to locally R.p. groups

Recall
m M(G) is the coarse group of a locally R.p. G,

m CG is the closure under isomorphism of the range of M.

Definition
Given a structure M € CG, let G(M) be the closed subgroup of
Sym(N) consisting of the permutations p such that

ABE C <= p(A)B C p(C) for each A,B,C € M.
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Borel duality theorem

M
We have defined maps LRP CG.

g
Theorem
m CG is a Borel class. M and G are Borel maps.
m M and G are inverses up to isomorphism:

For each G € LRP and each M € CG,
G(M(G)) Z4op G and M(G(M)) = M.

The pair of functors M, G yields an equivalence of the categories:
m LRP locally R.p. groups with topological isomorphism

m CG corresponding coarse groups with isomorphism of
structures.
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II. Computable duality for

totally disconnected,

locally compact (tdlc) groups
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Basic fact on tdlc groups

Van Dantzig’s theorem (1936): Each tdlc group G has a basis of
neighbourhoods of 1 consisting of compact open subgroups. In
particular, if G is countably based it is non-Archimedean.

So tdlc groups form a proper subclass of the non-Archimedean
locally R.p. groups.

van Dantzig follows from these two facts:

m For each totally disconnected, locally compact space, the clopen
sets form a basis.

m For each Hausdorff group, each compact open neighbourhood of 1
contains a compact open subgroup.
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Some examples of tdlc groups G

» All profinite groups and all discrete groups.
» (Qp,+), the additive group of p-adic numbers for a prime p.

» The semidirect product Z x Q, where g € Z acts as x — xp

on Q,.
» The groups SL,(Q,) for n > 2.

» Aut(7,), the automorphisms of an undirected tree with each
vertex of degree d. Stabilizer of a vertex is a compact open
subgroup.

15/1



Motivating questions

(A) How can one define a computable presentation of a tdlc group?
Which tdlc groups have such a presentation?

(B) Given a computable presentation of a tdlc group, are objects
such as the (rational-valued) Haar measures, the modular
function, or the scale function computable?
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Computable duality

We will provide two kinds of computable presentation: one based
on paths on trees, the other on a variant of coarse groups.

They turn out to be equivalent, in the sense that from a

presentation of one type one can construct a presentation of the
other type.
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Defining computably tdlc groups

via Baire presentation
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Trees, and computable function on their paths

N* denotes tuples of natural numbers, pictured as a directed tree.
For a subtree T" of N* without leaves, by [T'] one denotes its set of
paths.

F: [T] — [T] is computable if there is a Turing machine L as
follows. If av is on the read-only input tape, it puts F'(«) on the
write-only output tape.

For example, let F'(a)(n) =, , a(n). This F' is computable.

computable = continuous

because such a TM L determines any entry on the output tape
from finitely many queries to the input tape. E.g., a function M
with M («)(0) = min{«(i): i € N} is not computable.

19/1



Computable Baire presentation of tdlc G

We use that each 0-dimensional Polish space is homeomorphic to
some path set [T7.

m The domain of this presentation of G equals [T for a
computable subtree of N* such that

m the only possible infinite branching is at the root
m there is a computable bound h: N — N such that
w(i) < h(i,w(0)) for each w € T and i > 0.
(The tree above n is finitely branching, effectively in n.)

m The operations of GG are computable.
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level i
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F,((t)) and Aut(7y) have a comp. Baire

presentation

Let @ be the tree of strings 7 € N* such that
m all entries, except possibly the first, are among {0,...,p — 1},
m 70 A 7 for each r > 0.

String ro € ) denotes the Laurent polynomial

7" D 0<k<lo] o(k)xk.

One checks that addition (and also multiplication) on F,((t)) are
computable. @, works in a similar way. Then we can show that

GL,(F,((t))) and GL,,(Q,) are computably tdlc.

For Aut(7y), the bottom level of T tells where a fixed vertex v of

T, goes. The k-th level says where vertices at distance k from v go.
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Computability in the abelian case

Theorem (Lupini, Melnikov and N., J Algebra, 2022)

Let G be an abelian tdlc group. The following are equivalent.
(1) G is computably tdlc.

(2) There exist:
(i) a computable profinite group K
(ii) a computable discrete group L

such that G is a topological extension of L by K via a computable
co-cyclec: L x L — K.

(3) A characterisation as a certain computable inverse limit of
countable groups.
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Defining computably tdlc groups

via meet groupoids
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What'’s a groupoid? (Old notion)

Intuitively, the notion of a groupoid generalizes the notion of a
group by allowing that the binary operation is partial.

m A groupoid is given by a domain ¥V on which a unary

operation (.)~! and a partial binary operation, denoted by “”,
are defined.

m Category view: a groupoid is a small category in which each
morphism has an inverse.

m A: U — V means that U,V are idempotent (U - U = U), and
A=UA=AV.
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The meet groupoid of a tdlec group G

m W(G) is an algebraic structure on the countable set of
compact open cosets in GG, together with ().

m This structure is a partially ordered groupoid. The partial
order is set inclusion. We can multiply a left coset A of some
subgroup U with a right coset B of the same U. This is a coset
because, if A = alU and B = Ub some a,b € GG, then

AB = aUb=U""ab = abU".

m The intersection of two compact open cosets is either empty or
is such a coset itself. So W(G) is a meet semilattice.

One can define in a first-order way the coarse group from the meet
groupoid, and conversely. However, they are not computationally
equivalent because the definitions need a lot of quantifiers (which

amount to unbounded search over the structure).
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Abstract definition of a groupoid

Definition

A meet groupoid is a groupoid (W, -, (.)™") that is also a meet
semilattice (W, N, () of which ) is the least element.
Writing A C B <= AN B = A, it satisfies the conditions

m()'=0=0-0,and 0- A and A - () are undefined for each
A#0,
m if U,V are idempotents such that U,V # (), then U NV # (),
m ACB<+= A1'CB! and
m if A;- B; are defined (i =0,1) and AgN Ay # () # By N By,
then
(AgN Ay) - (ByNBy) =Ag-ByNA; - By.
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Automorphism group of G and Chabauty space

Let W = W(G) be the meet groupoid of a tdlc group G.
Proposition (Melnikov and N. ’22; Logic Blog ’23)

m Aut(G) with the usual Braconnier topology is canonically
homeomorphic to Aut(WW):
Send ¢ € Aut(G) to its action on W.

m The Chabauty space S(G) of closed subgroups of G' can be
canonically represented by a closed subset of 2"V, consisting of
certain ideals of W.
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Computably tdlc groups via meet groupoids

A meet groupoid W is called Haar computable if
(a) its domain is a computable subset D of N;

(b) the groupoid and meet operations are computable; in
particular, the relation {(z,y): z,y € D A x -y is defined} is
computable;

(c) the function sending a pair of idempotents U,V € W to the
number of (left, say) cosets of U NV in U is computable.

Definition (Computably tdlc groups via meet groupoids)

Let G be a tdlc group. We say that G is computably tdlc via a
meet groupoid if W(G) has a Haar computable copy W.
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Computable duality

Theorem

A group G is computably tdlc via a Baire presentation <=

G is computably tdlc via a meet groupoid.
From a presentation of G of one type, one can uniformly obtain a
presentation of G of the other type.

As a corollary to the proof, we have:
Corollary
m Let W be a Haar computable copy of W(G) (with domain N).
m The left and right actions [T'] x N — N, given by
(9,A) = gA and (g, A) — Ag,
are computable.
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Algorithmic properties of objects

associated with a tdlc group
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The modular function is computable
Throughout, let G be computably tdlc via a Baire presentation
based on [T], and let W be the Haar computable copy of W(G)

m by definition, the modular function is A(g) = u(Ug)/u(U),
where U is any compact open subgroup, u a left Haar measure;

m we may assume £ is rational valued, and hence that y is
computable.

Since the right action of G on W is computable, we have:

Proposition

The modular function A: [T] — QT is computable.
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The Cayley-Abels graphs are computable

If G is compactly generated, there is a compact open subgroup U,
and a set S = {sy,...,s;} C G such that S=S"'and UU S
algebraically generates GG. The Cayley-Abels graph

I'sv = Vsy, Esu)

of G is given as follows. The vertex set Vs is the set G\U of left
cosets of U, and the edge relation is

Esy ={(gU,gsU): g€ G,s € S}.

Theorem

Suppose that G is computably tdlc and compactly generated. Each
Cayley-Abels graph I'g;; of G has a computable copy L.
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Algorithmic properties of the scale function
For a compact open subgroup V of G and an element g € G let
m(g,V)=|VI9: V nVI|.
Recall the scale function [T'] — N is
s(g) = min{m(g,V): V is a compact open subgroup}.
E.g.,in Z x Q,, where generator g € Z acts as x — xp, we have
s(g) =1,s(¢g7") =p.

Fact
The scale function is computably approximable from above.

Example

For d > 3, the scale function on Aut(7}) in the canonical
computable presentation is computable.
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A noncomputable scale

For the given examples the scale is computable. However:

Theorem (Melnikov, N., Willis, 2022)

There is a computable presentation of a tdlc group G based on a
tree T such that the scale function s: [T] — N is not computable.

In fact, there is a uniformly computable sequence (g, )nen in G such
that s(g,) = 2 if n € K (the halting problem), and 1 otherwise.

Proof. We write H for the additive group of Fa((t)).
We use the canonical computable Baire presentation (@), Mult, Inv) of

H: recall that string ro denotes the Laurent polynomial

7" Y 0<k<o] o(k)z*.
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Proof: c-bounded permutations

For ¢ € N, we say that a permutation « of Z is c-bounded if
la(z) — z| < ¢ for each z € Z.
Then the function @ defined on H by

a(z rert) = Z Ta(k)x”(k))

kEZ keZ
is a continuous automorphism of H.

Claim (easy)

Let a be a computable c-bounded permutation of Z.
Then a: [Q] — [Q] is computable, uniformly in ¢ and the program
for a Turing machine computing a.
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Proof: encode K into the scale

Since the halting problem K is recursively enumerable, IC = |, K
for a suitable computable sequence of strong indices for finite
subsets of N. May assume K; = KC;_; for ¢ odd. The following
defines a computable function Nt x Z — Z via (i,t) — S;(t):

t+2 iftiseven and i & K,

t—2 iftisodd and i ¢ K,

t+1 iftisevenand: e K, — Ki_y
t if1 € ;4

Bi(t) =

If i ¢ IC then f3; is the permutation of Z that adds 2 to even
numbers, and subtracts 2 from odd numbers. So s(5;) = 2.
If i € I, let ¢ be least such that ¢ € K;. Then s(5;) = 1 because

the nontrivial cycle of ; “turns around” at position t.
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Proof: putting it together

Now let G; = Z %, H, where v; is the action Z x H — H given by
~i(z,h) = 3, (h). This is computable uniformly in s.

Let g; be the generator of Z in (G; whose conjugation action on H
induces ;. Then sq,(g:) = su(5;) because G; and H have the
same compact open subgroups.

Let G = (T, Mult, Inv) be a computable Baire presentation of the
local direct product G = @, +(G;,U). It is clear that g; viewed
as an element of G is computable uniformly in ¢, and

s¢(9;) = sa,(gi) for each i.

Thus s¢(g;) = 1 iff i € I, as required.
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Quotients by computable closed normal subgroups

Theorem (Thm. 11.11 in ’22 preprint with Melnikov)

Let N be a closed normal subgroup of G such that Tree(N) is a
computable subtree of Tree(G). Then G/N is computably tdlc.

We prove this by building a Haar computable copy of the meet
groupoid of G/N.

Along the way we have to show that “/IC C NL” is decidable, where
IC, L are compact open sets.

Application: PGL,(Q,) is computably tdlc.
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Outlook

m When is the scale computable?
Find conditions on classes of tdlc groups implying this.
For instance, we know that computable p-adic Lie groups have
computable scale.

m Study “double coset scale” of 7 € Aut(G), which is defined via
counting double cosets. Perhaps this makes sense in the wider
context of locally R.p. groups.

m In Aut(7,), 3 < d < oo, we have ds(7) = 2 where 7 is
translation by one vertex along an axis (observed by Willis).
In contrast, s(m) = d — 1 when d < oc.
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