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Polish groups, non-Archimedean groups

Begin with background. All topological groups G in this talk will

be Polish. Note that each open subgroup is closed, and has

countable index in G.

G is non-Archimedean if it has a basis of neighbourhoods of the

identity consisting of open subgroups. Such groups have a basis of

clopen sets.

They are, up to homeomorphism, the closed subgroups of the

topological group Sym(N) of permutations of N with the usual

topology of pointwise convergence.
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(Locally) Roelcke precompact groups

Let G be a closed subgroup of Sym(N). Note G is compact iff each

open subgroup has only finitely many (left) cosets.

Definition (for such G)

G is Roelcke precompact (R.p.) if each open subgroup U has

only finitely many double cosets. That is, there is finite α ⊆ G

such that G = UαU .

G is locally Roelcke precompact if G has a Roelcke

precompact open subgroup.
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Borel classes of closed subgroups of Sym(N)
The closed subgroups G of Sym(N) form a “standard Borel space”:

If σ is a string let [σ] = {π ∈ Sym(N) : σ ≺ π}.
The σ-algebra of Borel sets is generated by the sets

{G : G ∩ [σ] ̸= ∅}.

Kechris, N. and Tent, 2018; Logic Blog 2020:

Programme

(a) Determine whether classes C of closed subgroups of S∞ are

Borel.

(b) If C is Borel, study the relative complexity of the topological

isomorphism relation using Borel reducibility ≤B.
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Some classes, and inclusion relations
locally Roelcke precomp.

Roelcke precomp.

⊂

locally comp.

⊃

oligom.

∪

compact

⊃
⊂

discrete

∪

Isomorphism relation on each class in the diagram is ≤B graph

isomorphism (Kechris, N. and Tent, 2018).

∼= on the profinite groups is ≥B graph isomorphism (Kechris,

N. and Tent, 2018).

∼= on the class of oligomorphic groups is ≤B a countable Borel

equivalence relation (N., Schlicht and Tent, 2021).
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Two goals in this talk

(1) Show how to represent locally Roelcke precompact groups by

certain countable structures called “coarse groups”. Establish

Borel duality.

(2) For tdlc groups, introduce a variant of the coarse groups called

“meet groupoids”. They are algebraically more concise, and

hence can be used for an algorithmic theory of such groups.
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I. Borel duality between

locally Roelcke precompact groups and

their coarse groups
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Roelcke precompactness

In the first part of the talk, by G we always denote a closed

subgroup of Sym(N). For such G general definitions of Roelcke,

1988; Rosendal, Zielinski, 2020 amount to this:

Definition

G is Roelcke precompact (R.p.) if each open subgroup U has only

finitely many double cosets.

G is locally Roelcke precompact if it has a R.p. open subgroup.

Let T∞ be the undirected tree with each vertex of infinite degree.

Aut(T∞) is locally R.p. (Zielinski), and not locally compact.

The stabiliser of a vertex is Roelcke precompact.
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Some coarse language
The following was introduced for R.p. in Kechris, N., Tent 2018.

Given a locally R.p. G, let M(G) be its coarse group:

The domain consists of (numbers encoding) the R.p. open

cosets in G.

Ternary relation “AB ⊆ C” on the domain.

R.p. open cosets approximate elements of G, so this ternary

relation approximates the binary group operation.

Each R.p. open subgroup of G is a finite union of double cosets of

a basic open subgroup. So ∃ only countably many such subgroups.

Using descriptive set theory, we can view the operator M as a

Borel function from locally R.p. groups to structures with

domain N.
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Borel duality theorem

An abstract coarse group is a structure on N with a ternary

relation satisfying certain axioms1. Denote elements by

A,B,C, and write the ternary relation suggestively as

AB ⊑ C.

Let CG be the closure under isomorphism of the range of M,

among structures on N with one ternary relation.

We aim at a duality

locally R.p. groups LRP
M ++

CG
G
ll class of coarse groups.

1see N., Schlicht, Tent JML 2021, Coarse groups, and the isomorphism

problem for oligomorphic groups, Def 2.1 onwards
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Defining the reverse operation G:
from coarse groups to locally R.p. groups

Recall

M(G) is the coarse group of a locally R.p. G,

CG is the closure under isomorphism of the range of M.

Definition

Given a structure M ∈ CG, let G(M) be the closed subgroup of

Sym(N) consisting of the permutations p such that

AB ⊑ C ⇐⇒ p(A)B ⊑ p(C) for each A,B,C ∈ M .
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Borel duality theorem

We have defined maps LRP
M ++

CG
G
ll .

Theorem

CG is a Borel class. M and G are Borel maps.

M and G are inverses up to isomorphism:

For each G ∈ LRP and each M ∈ CG,

G(M(G)) ∼=top G and M(G(M)) ∼= M .

The pair of functors M,G yields an equivalence of the categories:

LRP locally R.p. groups with topological isomorphism

CG corresponding coarse groups with isomorphism of

structures.
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II. Computable duality for

totally disconnected,

locally compact (tdlc) groups
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Basic fact on tdlc groups

Van Dantzig’s theorem (1936): Each tdlc group G has a basis of

neighbourhoods of 1 consisting of compact open subgroups. In

particular, if G is countably based it is non-Archimedean.

So tdlc groups form a proper subclass of the non-Archimedean

locally R.p. groups.

van Dantzig follows from these two facts:

For each totally disconnected, locally compact space, the clopen

sets form a basis.

For each Hausdorff group, each compact open neighbourhood of 1

contains a compact open subgroup.
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Some examples of tdlc groups G

▶ All profinite groups and all discrete groups.

▶ (Qp,+), the additive group of p-adic numbers for a prime p.

▶ The semidirect product Z ⋉Qp where g ∈ Z acts as x 7→ xp

on Qp.

▶ The groups SLn(Qp) for n ≥ 2.

▶ Aut(Td), the automorphisms of an undirected tree with each

vertex of degree d. Stabilizer of a vertex is a compact open

subgroup.
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Motivating questions

(A) How can one define a computable presentation of a tdlc group?

Which tdlc groups have such a presentation?

(B) Given a computable presentation of a tdlc group, are objects

such as the (rational-valued) Haar measures, the modular

function, or the scale function computable?
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Computable duality

We will provide two kinds of computable presentation: one based

on paths on trees, the other on a variant of coarse groups.

They turn out to be equivalent, in the sense that from a

presentation of one type one can construct a presentation of the

other type.
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Defining computably tdlc groups

via Baire presentation
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Trees, and computable function on their paths
N∗ denotes tuples of natural numbers, pictured as a directed tree.

For a subtree T of N∗ without leaves, by [T ] one denotes its set of

paths.

F : [T ] → [T ] is computable if there is a Turing machine L as

follows. If α is on the read-only input tape, it puts F (α) on the

write-only output tape.

For example, let F (α)(n) =
∑

i≤n α(n). This F is computable.

computable ⇒ continuous

because such a TM L determines any entry on the output tape

from finitely many queries to the input tape. E.g., a function M

with M(α)(0) = min{α(i) : i ∈ N} is not computable.
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Computable Baire presentation of tdlc G

We use that each 0-dimensional Polish space is homeomorphic to

some path set [T ].

The domain of this presentation of G equals [T ] for a
computable subtree of N∗ such that

the only possible infinite branching is at the root

there is a computable bound h : N → N such that

w(i) ≤ h(i, w(0)) for each w ∈ T and i > 0.

(The tree above n is finitely branching, effectively in n.)

The operations of G are computable.
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Fp((t)) and Aut(Td) have a comp. Baire

presentation
Let Q be the tree of strings τ ∈ N∗ such that

all entries, except possibly the first, are among {0, . . . , p− 1},
r0 ̸⪯ τ for each r > 0.

String rσ ∈ Q denotes the Laurent polynomial

x−r
∑

0≤k<|σ| σ(k)x
k.

One checks that addition (and also multiplication) on Fp((t)) are

computable. Qp works in a similar way. Then we can show that

GLn(Fp((t))) and GLn(Qp) are computably tdlc.

For Aut(Td), the bottom level of T tells where a fixed vertex v of

Td goes. The k-th level says where vertices at distance k from v go.
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Computability in the abelian case

Theorem (Lupini, Melnikov and N., J Algebra, 2022)

Let G be an abelian tdlc group. The following are equivalent.

(1) G is computably tdlc.

(2) There exist:

(i) a computable profinite group K

(ii) a computable discrete group L

such that G is a topological extension of L by K via a computable

co-cycle c : L× L → K.

(3) A characterisation as a certain computable inverse limit of

countable groups.

23 / 1



Defining computably tdlc groups

via meet groupoids

24 / 1



What’s a groupoid? (Old notion)

Intuitively, the notion of a groupoid generalizes the notion of a

group by allowing that the binary operation is partial.

A groupoid is given by a domain W on which a unary

operation (.)−1 and a partial binary operation, denoted by “·”,
are defined.

Category view: a groupoid is a small category in which each

morphism has an inverse.

A : U → V means that U, V are idempotent (U · U = U), and

A = UA = AV .
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The meet groupoid of a tdlc group G
W(G) is an algebraic structure on the countable set of

compact open cosets in G, together with ∅.
This structure is a partially ordered groupoid. The partial

order is set inclusion. We can multiply a left coset A of some

subgroup U with a right coset B of the same U . This is a coset

because, if A = aU and B = Ub some a, b ∈ G, then

AB = aUb = Ua−1
ab = abU b.

The intersection of two compact open cosets is either empty or

is such a coset itself. So W(G) is a meet semilattice.

One can define in a first-order way the coarse group from the meet

groupoid, and conversely. However, they are not computationally

equivalent because the definitions need a lot of quantifiers (which

amount to unbounded search over the structure).
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Abstract definition of a groupoid

Definition

A meet groupoid is a groupoid (W , ·, (.)−1) that is also a meet

semilattice (W ,∩, ∅) of which ∅ is the least element.

Writing A ⊆ B ⇐⇒ A ∩B = A, it satisfies the conditions

∅−1 = ∅ = ∅ · ∅, and ∅ · A and A · ∅ are undefined for each

A ̸= ∅,
if U, V are idempotents such that U, V ̸= ∅, then U ∩ V ̸= ∅,
A ⊆ B ⇐⇒ A−1 ⊆ B−1, and

if Ai ·Bi are defined (i = 0, 1) and A0 ∩ A1 ̸= ∅ ≠ B0 ∩B1,

then

(A0 ∩ A1) · (B0 ∩B1) = A0 ·B0 ∩ A1 ·B1.
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Automorphism group of G and Chabauty space

Let W = W(G) be the meet groupoid of a tdlc group G.

Proposition (Melnikov and N. ’22; Logic Blog ’23)

Aut(G) with the usual Braconnier topology is canonically

homeomorphic to Aut(W):

Send ϕ ∈ Aut(G) to its action on W .

The Chabauty space S(G) of closed subgroups of G can be

canonically represented by a closed subset of 2W , consisting of

certain ideals of W .
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Computably tdlc groups via meet groupoids

A meet groupoid W is called Haar computable if

(a) its domain is a computable subset D of N;
(b) the groupoid and meet operations are computable; in

particular, the relation {⟨x, y⟩ : x, y ∈ D ∧ x · y is defined} is

computable;

(c) the function sending a pair of idempotents U, V ∈ W to the

number of (left, say) cosets of U ∩ V in U is computable.

Definition (Computably tdlc groups via meet groupoids)

Let G be a tdlc group. We say that G is computably tdlc via a

meet groupoid if W(G) has a Haar computable copy W .
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Computable duality

Theorem

A group G is computably tdlc via a Baire presentation ⇐⇒
G is computably tdlc via a meet groupoid.

From a presentation of G of one type, one can uniformly obtain a

presentation of G of the other type.

As a corollary to the proof, we have:

Corollary

Let W be a Haar computable copy of W(G) (with domain N).
The left and right actions [T ]× N → N, given by

(g, A) 7→ gA and (g, A) 7→ Ag,

are computable.
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Algorithmic properties of objects

associated with a tdlc group
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The modular function is computable

Throughout, let G be computably tdlc via a Baire presentation

based on [T ], and let W be the Haar computable copy of W(G)

by definition, the modular function is ∆(g) = µ(Ug)/µ(U),

where U is any compact open subgroup, µ a left Haar measure;

we may assume µ is rational valued, and hence that µ is

computable.

Since the right action of G on W is computable, we have:

Proposition

The modular function ∆: [T ] → Q+ is computable.
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The Cayley-Abels graphs are computable
If G is compactly generated, there is a compact open subgroup U ,

and a set S = {s1, . . . , sk} ⊆ G such that S = S−1 and U ∪ S

algebraically generates G. The Cayley-Abels graph

ΓS,U = (VS,U , ES,U)

of G is given as follows. The vertex set VS,U is the set G\U of left

cosets of U , and the edge relation is

ES,U = {⟨gU, gsU⟩ : g ∈ G, s ∈ S}.

Theorem

Suppose that G is computably tdlc and compactly generated. Each

Cayley-Abels graph ΓS,U of G has a computable copy L.
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Algorithmic properties of the scale function
For a compact open subgroup V of G and an element g ∈ G let

m(g, V ) = |V g : V ∩ V g|.

Recall the scale function [T ] → N is

s(g) = min{m(g, V ) : V is a compact open subgroup}.

E.g., in Z ⋉Qp, where generator g ∈ Z acts as x 7→ xp, we have

s(g) = 1, s(g−1) = p.

Fact

The scale function is computably approximable from above.

Example

For d ≥ 3, the scale function on Aut(Td) in the canonical

computable presentation is computable.
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A noncomputable scale

For the given examples the scale is computable. However:

Theorem (Melnikov, N., Willis, 2022)

There is a computable presentation of a tdlc group G based on a

tree T such that the scale function s : [T ] → N is not computable.

In fact, there is a uniformly computable sequence (gn)n∈N in G such

that s(gn) = 2 if n ̸∈ K (the halting problem), and 1 otherwise.

Proof. We write H for the additive group of F2((t)).

We use the canonical computable Baire presentation (Q,Mult, Inv) of

H: recall that string rσ denotes the Laurent polynomial

x−r
∑

0≤k<|σ| σ(k)x
k.
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Proof: c-bounded permutations

For c ∈ N, we say that a permutation α of Z is c-bounded if

|α(z)− z| ≤ c for each z ∈ Z.
Then the function α̂ defined on H by

α̂(
∑
k∈Z

rkx
k) =

∑
k∈Z

rα(k)x
α(k))

is a continuous automorphism of H.

Claim (easy)

Let α be a computable c-bounded permutation of Z.
Then α̂ : [Q] → [Q] is computable, uniformly in c and the program

for a Turing machine computing α.
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Proof: encode K into the scale
Since the halting problem K is recursively enumerable, K =

⋃
t Kt

for a suitable computable sequence of strong indices for finite

subsets of N. May assume Kt = Kt−1 for t odd. The following

defines a computable function N+ × Z → Z via ⟨i, t⟩ 7→ βi(t):

βi(t) =


t+ 2 if t is even and i ̸∈ Kt

t− 2 if t is odd and i ̸∈ Kt

t+ 1 if t is even and i ∈ Kt −Kt−1

t if i ∈ Kt−1

If i ̸∈ K then βi is the permutation of Z that adds 2 to even

numbers, and subtracts 2 from odd numbers. So s(β̂i) = 2.

If i ∈ K, let t be least such that i ∈ Kt. Then s(β̂i) = 1 because

the nontrivial cycle of βi “turns around” at position t.
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Proof: putting it together

Now let Gi = Z ⋉γi H, where γi is the action Z×H → H given by

γi(z, h) = β
z

i (h). This is computable uniformly in i.

Let gi be the generator of Z in Gi whose conjugation action on H

induces βi. Then sGi
(gi) = sH(β̂i) because Gi and H have the

same compact open subgroups.

Let G = (T,Mult, Inv) be a computable Baire presentation of the

local direct product G =
⊕

i∈N+(Gi, U). It is clear that gi viewed

as an element of G is computable uniformly in i, and

sG(gi) = sGi
(gi) for each i.

Thus sG(gi) = 1 iff i ∈ K, as required.
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Quotients by computable closed normal subgroups

Theorem (Thm. 11.11 in ’22 preprint with Melnikov)

Let N be a closed normal subgroup of G such that Tree(N) is a

computable subtree of Tree(G). Then G/N is computably tdlc.

We prove this by building a Haar computable copy of the meet

groupoid of G/N .

Along the way we have to show that “K ⊆ NL” is decidable, where

K,L are compact open sets.

Application: PGLn(Qp) is computably tdlc.
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Outlook

When is the scale computable?

Find conditions on classes of tdlc groups implying this.

For instance, we know that computable p-adic Lie groups have

computable scale.

Study “double coset scale” of π ∈ Aut(G), which is defined via

counting double cosets. Perhaps this makes sense in the wider

context of locally R.p. groups.

In Aut(Td), 3 ≤ d ≤ ∞, we have ds(π) = 2 where π is

translation by one vertex along an axis (observed by Willis).

In contrast, s(π) = d− 1 when d < ∞.
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